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Abstract

The free vibration and buckling of partial interaction composite beams are investigated using the state-space method

based on the two-dimensional theory of elasticity. The analytical solutions of a beam with two simply supported ends are

obtained as well as semi-analytical solutions are obtained for other end conditions using the differential quadrature

method coupled with the state-space method. The frequencies and buckling loads are tabulated and compared with those

available in the literature. Because the plane section assumption of the classical beam theory is not used, the presented

method is applicable not only to slender beams, but also to thick beams. Consequently, the presented method can be a

benchmark for other approximate methods based on one-dimensional beam theories.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Partial interaction composite members have attracted much research attention due to their more complex
behavior, which is caused by the interlayer slip between the individual components. Newmark et al. [1]
presented the linear relationship of the interlayer slip and the rigidity of the shear connector based on their
experiment results. Following this famous work, many interesting and useful results have been obtained by
using analytical, numerical, or experimental methods. For example, Goodman [2], Girhammar and Gopu [3]
and Girhammar and Pan [4,5], Wang [6], Biscontin et al. [7], Ranzi and Bradford [8], Wu et al. [9,10], and
Chen et al. [11] have presented analytical investigations concerning the static or dynamic behavior of
composite beams with interlayer slip. Amana and Booth [12] and Wu et al. [13] have designed experiments and
investigated the experimental results to demonstrate analytical methods. In addition, many researchers have
presented the beam elements including the effects of partial interaction [14–17]. All of the above-mentioned
methods are based on Euler–Bernoulli beam theory and are applicable only to slender beams or low order
vibration in beams. Schnabl et al. [18] analyzed the static behavior of two-layer beams with partial interaction
interface and shear deformation. Xu and Wu [19] investigated the static, dynamic, and buckling behavior of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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partial interaction composite beams using Timoshenko’s beam theory (TBT). These works demonstrated the
effects of shear deformation and rotational inertia on the deflections and vibration frequencies of partial
interaction composite beams. Berczynski and Wrsblewski [20] and Ranzi and Zona [21] also analyzed the
vibration of steel–concrete composite beams using Timoshenko beam model.

Xu and Wu [22] presented a plane stress model of composite beams with interlayer slip by the state-space
method based on two-dimensional theory. The deflection and stress are obtained analytically for a beam with
two simply supported ends under arbitrarily distributed transverse loading. Their method discards the plane
section assumption of the classical beam theory (CBT) and can predict the static behavior of partial
interaction composite beams more precisely than existing beam theories, especially for a thick beam. In this
paper, the state-space method is extended to investigate the free vibration and buckling of partial interaction
composite beams. The exact analytical solution of beams with two simply supported ends is obtained through
trigonometric function expansion. Moreover, the solution of beams with non-simply supported ends is solved
by a semi-analytical method using the differential quadrature method (DQM) coupled with state-space
method, which was first presented by Chen and co-workers [23,24] and called SS-DQM. Finally, the numerical
results are tabulated to compare the analytical and semi-analytical methods.

2. Formulation

The main idea of the previous work [22] is given in brief and then extended for the vibration and buckling
analysis of composite beams. Fig. 1(a) shows a composite beam that consists of sub-elements with different
material properties. By employing the equivalent rules presented in the previous work [22], the Young’s
moduli E0i of the realistic materials are converted to the equivalent moduli Ei through multiplying the
corresponding width bi. To investigate the dynamic behavior of the beams, the densities r0i of the realistic
materials must also be converted to the equivalent densities ri, which can be readily obtained through
multiplying the width bi again, for considering the inertial force. Finally, the dimensions and material
properties of the equivalent cross section are shown in Fig. 1(b). In this way, the composite beam is converted
to a plane stress state [22,25].

To study the buckling behavior of the composite member, the axial force needs to be taken into account in
the above model. However, the axial force as a stress resultant cannot be applied directly to the plane stress
problem, because only the stress and displacement components exist in the governing equation and boundary
conditions. In other words, the axial force must be treated as an initial normal stress in the axial direction
according to Saint Venant’s principle. Fig. 2(a) shows one end of the composite beam with an axial force Nx0,
which is located at the neutral axis of the beam. It is well known that the axial force Nx0 can be replaced by a
static equivalent distributed stress s0xi (as shown in Fig. 2(b)) in which only the stresses near the end are
affected, in accordance with Saint Venant’s principle.

Based on the foregoing analysis, a two-dimensional model is proposed for partial interaction composite
beams, as shown in Fig. 3. The model is assumed to have m elements in general, because some members, such
as the steel I-type section, need to be treated as multiple elements due to the different widths of its flange and
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Fig. 1. Original and equivalent cross sections of composite beams.
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Fig. 2. The axial force and equivalent axial stress according to Saint Venant’s principle.
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Fig. 3. Two-dimensional model of partial interaction composite beams.
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web (see Fig. 1). The symbols Ei, mi, Gi, ri, and hi denote the elastic modulus, Poisson’s ratio, shear modulus,
mass density, and height of element i, respectively. In the following derivation, it is further assumed that the
interlayer slip occurs at interface 1 of elements 1 and 2, and that the other interfaces are perfectly bonded.
For interlayer slips that exist at other interfaces, the presented method is similarly applicable. The rigidity of
the shear connector is denoted by ks, and s0xi is the initial stress applied on the ith element converted from the
axial force.

The differential equation of motion with the initial stress for the plane stress state in the xy plane of element
i is given by

qsxi

qx
þ

qtxyi

qy
¼ ri

q2ui

qt2
þ s0xi

q2ui

qx2
,

qtxyi

qx
þ

qsyi

qy
¼ ri

q2vi

qt2
þ s0xi

q2vi

qx2
, ð1Þ

where sxi and syi are the normal stresses and txyi is the shear stress of element i. The constitutive relations of
an isotropic material are given by

qui

qx
¼

1

Ei

sxi � misyi

� �
;

qvi

qy
¼

1

Ei

�misxi þ syi

� �
;

qui

qy
þ

qvi

qx
¼

1

Gi

txyi (2)

in which ui and vi are the longitudinal and transverse displacements of element i, respectively. The governing
equations (1) and (2) of the plane stress problem include three stresses sxi, syi, and txyi and two displacements
ui and vi. They can be rearranged into the so-called state-space formula through substitutions and



ARTICLE IN PRESS
R. Xu, Y.-F. Wu / Journal of Sound and Vibration 313 (2008) 875–890878
simplifications in a way similar to that detailed in the previous work [22,25], i.e.,

q
qy

ui

syi

vi

txyi

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0 0 �q=qx 1=Gi

0 0 bi �q=qx

�miq=qx ð1� m2i Þ=Ei 0 0

bi � Eiq
2=qx2 �miq=qx 0 0

2
66664

3
77775

ui

syi

vi

txyi

8>>>><
>>>>:

9>>>>=
>>>>;

(3)

which is called the state-space formula of the plane stress problem of element i, in which the quantities ui, syi,
vi, and txyi are the state variables. The equation bi ¼ riq

2=qt2 þ s0xiq
2=qx2 is used to simplify the expressions.

Let bi equal zero and Eq. (3) can be reduced to a static problem, which has been obtained in Ref. [22]. Another
stress sxi is called the derived variable and can be expressed in terms of the state variables ui and syi from the
first one of Eq. (2) as

sxi ¼ Ei

qui

qx
þ misyi. (4)

Thus, the initial governing equations (1) and (2) become the state-space formula (3) and auxiliary equation (4),
which is more convenient for solving the problem of laminated or composite beams.
3. Solution of beams with two simply supported ends

If a beam is simply supported at the two ends, the boundary conditions are

vi ¼ 0; sxi ¼ 0 at x ¼ 0 and l. (5)

The above boundary conditions are applicable to each element in the y direction. This set of conditions is
therefore more rigorous than that of one-dimensional beam theory in which a beam is only supported in a
point-wise manner. Thus, the state variables can be assumed as

ui ¼ hUiðzÞ cos ðnpxÞ expðjotÞ; syi ¼ E0siðzÞ sin ðnpxÞ exp ðjotÞ,

vi ¼ hViðzÞ sinðnpxÞ expðjotÞ; txyi ¼ E0tiðzÞ cos ðnpxÞ exp ðjotÞ, ð6Þ

where n denotes the half-wavenumber in the x direction, E0 is the parameter with the dimension of stress and is
used to obtain the non-dimensional formulae, o signifies the resonant frequency, and t denotes time. The
symbols x and z denote the non-dimensional coordinates corresponding to x and y, which are defined as

x ¼ x=l; z ¼ y=h. (7)

Substituting Eq. (6) into Eq. (3) gives

d

dz

Ui

si

V i

ti

8>>><
>>>:

9>>>=
>>>;
¼

0 0 �an 1=Gi

0 0 �riO
2 � s0xia

2
n an

mian ð1� m2i Þ=Ei 0 0

�riO
2 þ ðEi � s0xiÞa

2
n �mian 0 0

2
66664

3
77775

Ui

si

V i

ti

8>>><
>>>:

9>>>=
>>>;
, (8)

where

an ¼ nph=l; Gi ¼ Gi=E0; Ei ¼ Ei=E0; s0xi ¼ s0xi=E0; ri ¼ ri=r0,

O2 ¼ r0o
2h2=E0 ð9Þ

in which O is the non-dimensional frequency and r0 is a parameter with the dimension of mass density. The
stress sxi is obtained by substituting Eq. (6) into Eq. (4) to give

sxi ¼ E0 �anEiUiðzÞ þ misiðzÞ
� �

sinðnpxÞ expðjotÞ. (10)
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Consequently, it is readily found that the boundary conditions at the two ends are satisfied. Now Eq. (8) is
an ordinary differential equation set and its solution is given by

UiðzÞ

siðzÞ

V iðzÞ

tiðzÞ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ e K i½ �ðz�zi�1Þ

Uiðzi�1Þ

siðzi�1Þ

Viðzi�1Þ

tiðzi�1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
ðz 2 ½zi�1; zi�Þ (11)

in which z0 ¼ 0, zi ¼ (h1+h2+?+hi)/h (i ¼ 1,2,y,m), and the matrix Ki½ � is the coefficient matrix of Eq. (8),
namely,

Ki½ � ¼

0 0 �an 1=Gi

0 0 �riO
2 � s0xia

2
n an

mian ð1� m2i Þ=Ei 0 0

�riO
2 þ ðEi � s0xiÞa

2
n �mian 0 0

2
66664

3
77775. (12)

Eq. (11) establishes a relation of the state variables at the location of zi�1 to z of element i. The exponential
function of the matrix [Ki](z�zi) is also a matrix, which is known as the transfer matrix through which the state
variables are transferred from zi�1 to z.

For the composite beam shown in Fig. 3, the compatibility conditions with interlayer slip at interface 1
are [22]

v2ðz1Þ ¼ v1ðz1Þ; sy2ðz1Þ ¼ sy1ðz1Þ; ks½u2ðz1Þ � u1ðz1Þ� ¼ txy2ðz1Þ ¼ txy1ðz1Þ (13)

and the continuous conditions of the other perfectly bonded interfaces are

uiþ1ðziÞ ¼ uiðziÞ; viþ1ðziÞ ¼ viðziÞ;

sy;iþ1ðziÞ ¼ syiðziÞ; txy;iþ1ðziÞ ¼ txyiðziÞ
ði ¼ 2; 3; . . . ;m� 1Þ. (14)

They can also be expanded in terms of the trigonometric function as in Eq. (6). Thus, the equivalent
expressions of Eqs. (13) and (14) can be rewritten as

U2ðz1Þ

s2ðz1Þ

V 2ðz1Þ

t2ðz1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1 0 0 E0=ðkshÞ

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

U1ðz1Þ

s1ðz1Þ

V 1ðz1Þ

t1ðz1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ P½ �

U1ðz1Þ

s1ðz1Þ

V 1ðz1Þ

t1ðz1Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(15)

and

Uiþ1ðziÞ

siþ1ðziÞ

Viþ1ðziÞ

tiþ1ðziÞ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

UiðziÞ

siðziÞ

ViðziÞ

tiðziÞ

8>>>><
>>>>:

9>>>>=
>>>>;
ði ¼ 2; 3; . . . ;m� 1Þ. (16)

If the shear rigidity of the shear connector is infinite, i.e., ks-N, the continuous condition (15) reduces to the
same form as Eq. (16), which corresponds to the full interaction interfaces.

Taking z ¼ zi in Eq. (11), we have the relation of the state variables at the top and bottom interfaces of
element i, which is

UiðziÞ

siðziÞ

ViðziÞ

tiðziÞ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Ti½ �

Uiðzi�1Þ

siðzi�1Þ

V iðzi�1Þ

tiðzi�1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
ði ¼ 1; 2; . . . ;mÞ, (17)
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where the transfer matrix [Ti] is given by

½Ti� ¼ expð½Ki�DziÞ (18)

in which Dzi ¼ hi/h (i ¼ 1,2,y,m). By employing Eqs. (15)–(17), the following relations of the state variables
at the top and bottom surfaces of the beam are obtained

Umð1Þ

smð1Þ

Vmð1Þ

tmð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Tm½ � Tm�1½ � � � � T2½ � P½ � T1½ �

U1ð0Þ

s1ð0Þ

V 1ð0Þ

t1ð0Þ

8>>>><
>>>>:

9>>>>=
>>>>;
, (19)

where the matrix [P] is the coefficient matrix of Eq. (15).
Because Eq. (19) has four equations with eight variables, complementary conditions are necessary, i.e., the

boundary conditions at the top and bottom surfaces of the beam. In the case of buckling or free vibration,
these surfaces are traction free, namely,

sy

��
y¼0
¼ 0; sy

��
y¼h
¼ 0; txy

��
y¼0
¼ 0; txy

��
y¼h
¼ 0. (20)

This means that

s1ð0Þ ¼ 0; smð1Þ ¼ 0; t1ð0Þ ¼ 0; tmð1Þ ¼ 0. (21)

The substitution of Eq. (21) into Eq. (19) yields

Umð1Þ

0

V mð1Þ

0

8>>><
>>>:

9>>>=
>>>;
¼ T½ �

U1ð0Þ

0

V1ð0Þ

0

8>>><
>>>:

9>>>=
>>>;
, (22)

where the matrix [T] ¼ [Tm][Tm�1]?[T2][P][T1]. Rearranging the second and fourth ones of the above
equation gives

T21 T23

T41 T43

" #
U1ð0Þ

V 1ð0Þ

( )
¼

0

0

� �
(23)

in which Tij denotes the element located at the ith row and jth column of the matrix [T]. For non-trivial
solutions of the unknowns U1(0) and V1(0), the determinant of the coefficient matrix of Eq. (23) has to vanish,
namely,

T21 T23

T41 T43

�����
����� ¼ 0. (24)

This is the characteristic equation of the buckling or free vibration with initial stress of partial interaction
composite beams.

The above derivation shows that the interlayer slip can be considered naturally using the state-space
method. Because the hypothesis of the lateral deflection and longitudinal displacement along the thickness of
the beam, which is usually introduced in one-dimensional beam theory, is not adopted, the proposed method
can be used to find more realistic distributions of the deformation of partial interaction composite beams. As a
result, this work is of great interest and importance, because it can verify and validate the reasonability or
precision of one-dimensional beam theories.

4. SS-DQM solution for beams with general end conditions

If a beam is not simply supported at either end, expansion using the trigonometric function in the x

direction as given by Eq. (6) is not applicable. In general, we can separate the time variable t from the space
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variables x and z as

ui ¼ hUiðz; xÞ expðjotÞ; syi ¼ E0siðz; xÞ expðjotÞ,

vi ¼ hV iðz; xÞ expðjotÞ; txyi ¼ E0tiðz; xÞ expðjotÞ. ð25Þ

Substituting this into Eq. (3) gives

q
qz

Ui

si

V i

ti

8>>><
>>>:

9>>>=
>>>;
¼

0 Ai

Bi 0

" # Ui

si

V i

ti

8>>><
>>>:

9>>>=
>>>;
, (26)

where

Ai ¼
�sq=qx 1=Gi

�riO
2 þ s0xis

2q2=qx2 �sq=qx

2
4

3
5,

Bi ¼
�misq=qx ð1� m2i Þ=Ei

�riO
2 þ ðs0xi � EiÞs

2q2=qx2 �misq=qx

2
4

3
5. ð27Þ

Eq. (26) will be solved by the semi-analytical method first presented by Chen and co-works [23,24], in which
the DQM [26] is used to discretize the x direction while the state-space formula is reserved for the z direction.
Thus, this method is called the SS-DQM.

The DQM approximates the derivative of a function f at any location xr by a linear summation of all of the
functional values f(xk) along a mesh line [26], namely,

qnf ðxrÞ

qxn ¼
XN

k¼1

C
ðnÞ
rk f ðxkÞ ðr ¼ 1; 2; . . . ;NÞ, (28)

where N is the mesh number and C
ðnÞ
ik are the weighting coefficients of the nth order derivative and can be

obtained using the method described in Ref. [26]. The above equation can be rendered in terms of a matrix for
convenient coding using a computer language such as MATLAB:

fðnÞ
� �

¼ CðnÞ
� �

ff g (29)

in which the elements of the matrix [C(n)] are the coefficients C
ðnÞ
rk in Eq. (28) and

ff g ¼ f ðx1Þ; f ðx2Þ; . . . ; f ðxN Þ½ �
T; fðnÞ

� �
¼

qnf ðx1Þ
qxn ;

qnf ðx2Þ
qxn ; . . . ;

qnf ðxN Þ

qxn

	 
T
. (30)

The x direction of the beam is meshed using N grid points, and the values of the state variables at these grid
points are denoted by the vectors {Ui}, {Vi}, {ri}, and {si}, namely,

Uif g ¼ Uiðz; x1Þ;Uiðz; x2Þ; . . . ;Uiðz; xNÞ½ �
T,

Vif g ¼ V iðz; x1Þ;Viðz; x2Þ; . . . ;Viðz; xNÞ½ �
T,

rif g ¼ siðz; x1Þ;siðz; x2Þ; . . . ;siðz; xNÞ½ �
T,

sif g ¼ tiðz; x1Þ; tiðz; x2Þ; . . . ; tiðz; xN Þ½ �
T. ð31Þ

Consequently, the approximation of Eq. (26) in discrete form is

d

dz
Uif g ¼ �s½Cð1Þ� Vif g þ

1

Gi

sif g,

d

dz
rif g ¼ �riO

2 Vif g þ s0xis
2½Cð2Þ� Vif g � s½Cð1Þ� sif g,
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d

dz
Vif g ¼ �mis½C

ð1Þ
� Uif g þ

1� m2i
Ei

rif g,

d

dz
sif g ¼ �riO

2 Uif g þ ðs0xi � EiÞs
2½Cð2Þ� Uif g � mis½C

ð1Þ
� rif g. ð32Þ

It can also be rewritten in matrix form as

d

dz

Ui

ri

Vi

si

8>>><
>>>:

9>>>=
>>>;
¼

0 0 �sCð1Þ 1=GiI

0 0 �riO
2Iþ s0xis

2C
ð2Þ
�sCð1Þ

�misC
ð1Þ

ð1� m2i Þ=EiI 0 0

�riO
2Iþ ðs0xi � EiÞs

2Cð2Þ �misC
ð1Þ 0 0

2
666664

3
777775

Ui

ri

Vi

si

8>>><
>>>:

9>>>=
>>>;

(33)

in which [I] is the identity matrix of order N. The boundary conditions at x ¼ 0 and l must be intro-
duced before solving the above equation. If the boundary conditions at the two ends of the beam are
represented by the derived variable sx, they must be replaced by the state variables using Eq. (4). The
general end conditions of beams are simply supported (S), clamped (C), or free (F) and there are four
combinations in practical engineering: SS, SC, CC, and CF. In the case of an SS beam, for example, the
boundary conditions are

vi ¼ 0; sxi ¼ 0 at x ¼ 0 and l. (34)

The first condition can be used directly, which implies

V i1 ¼ V iN ¼ 0, (35)

while the second condition must be rewritten according to Eq. (4), namely,

sxi1 ¼ Eis C
ð1Þ
1;:

h i
Uif g þ misi1 ¼ 0; sxiN ¼ Eis C

ð1Þ
N ;:

h i
Uif g þ misiN ¼ 0 (36)

in which ½C
ð1Þ
1;: � and ½C

ð1Þ
N ;:� are the first and last (i.e., Nth ) row of the matrix [C(1)].

The substitution of the above boundary conditions into Eq. (33) gives

d

dz

Ui

ri

Vi

si

8>>><
>>>:

9>>>=
>>>;
¼

0 Ai

B̄i 0

" # Ui

ri

Vi

si

8>>><
>>>:

9>>>=
>>>;
¼ Ki

� �
Ui

ri

Vi

si

8>>><
>>>:

9>>>=
>>>;

(37)

in which

Vi

� �
¼ V iðz; x2Þ;Viðz; x3Þ; . . . ;Viðz; xN�1Þ½ �

T,

rif g ¼ siðz; x2Þ;siðz; x3Þ; . . . ;siðz; xN�1Þ½ �
T

ð38Þ

and

Ai ¼

�sC
ð1Þ
:;2:N�1 1=GiI

�riO
2I2:N�1;2:N�1 þ s0xis

2C
ð2Þ
2:N�1;2:N�1 �sC

ð1Þ
2:N�1;:

2
4

3
5,

Bi ¼

�misC
ð1Þ
2:N�1;: ð1� m2i Þ=EiI2:N�1;2:N�1

�riO
2I þ s0xis

2Cð2Þ þ Eis
2ðC
ð1Þ
:;1C

ð1Þ
1;: þ C

ð1Þ
:;NC

ð1Þ
N ;: � Cð2ÞÞ �misC

ð1Þ
:;2:N�1

2
4

3
5 ð39Þ

in which some notations of the sub-matrix are introduced for the sake of concise expression. The symbol
C
ð1Þ
2:N�1;:, for example, denotes the sub-matrix of the matrix [C(1)] from the second row to the (N�1)th row. In a
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similar manner, the symbol C
ð2Þ
2:N�1;2:N�1 denotes the sub-matrix from the second row to the (N�1)th row and

from the second column to the (N�1)th column.
In a manner similar to that described in Section 3, we can obtain the following relation from the solution of

Eq. (37):

RiðziÞ
� �

¼ Ti

� �
Riðzi�1Þ
� �

, (40)

where

Ri

� �
¼ UT

i rT
i V

T

i sTi
h iT

,

Ti

� �
¼ expð½Ki�DziÞ. ð41Þ

The compatible condition at the partial interface is

U2ðz1Þ

r2ðz1Þ

V2ðz1Þ

s2ðz1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

I 0 0 E0=ðkshÞI

0 I 0 0

0 0 I 0

0 0 0 I

2
6664

3
7775

U1ðz1Þ

r1ðz1Þ

V1ðz1Þ

s1ðz1Þ

8>>>><
>>>>:

9>>>>=
>>>>;

or R2ðz1Þ
� �

¼ P
� �

R1ðz1Þ
� �

(42)

and the continuous condition at the full interfaces is

Uiþ1ðziÞ

riþ1ðziÞ

Viþ1ðziÞ

siþ2ðziÞ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

UiðziÞ

riðziÞ

ViðziÞ

siðziÞ

8>>>><
>>>>:

9>>>>=
>>>>;

or Riþ1ðziÞ
� �

¼ RiðziÞ
� �

ði ¼ 2; 3; . . . ;m� 1Þ. (43)

As a result, the following transfer relation is obtained from Eqs. (40), (42), and (43):

Rmð1Þ
� �

¼ Tm

� �
Tm�1

� �
� � � T2

� �
P
� �

T1

� �
R1ð0Þ
� �

¼ T
� �

R1ð0Þ
� �

. (44)

The traction-free conditions of the upper and bottom surfaces of the beam mean

rmð1Þ
� �

¼ r1ð0Þ
� �

¼ 0; smð1Þ
� �

¼ s1ð0Þ
� �

¼ 0. (45)

The substitution of Eq. (45) into Eq. (44) gives

Umð1Þ

0

Vmð1Þ

0

8>>><
>>>:

9>>>=
>>>;
¼

TUU TUs TUV TUt

TsU Tss TsV Tst

TVU TVs TVV TVt

TtU Tts TtV Ttt

2
66664

3
77775

U1ð0Þ

0

V1ð0Þ

0

8>>><
>>>:

9>>>=
>>>;
. (46)

Hence, a homogeneous equation can be extracted from the second and fourth equations of Eq. (46):

TsU TsV

TtU TtV

" #
U1ð0Þ

V1ð0Þ

( )
¼

0

0

� �
. (47)

The characteristic equation of the free vibration or buckling of partial composite beams is obtained

TsU TsV

TtU TtV

�����
����� ¼ 0. (48)

For other end conditions, the expression of the matrix ½Ki�, or its sub-matrices ½Ai� or ½Bi�, and the
corresponding compatible condition at the partial interface is different, and is detailed in the Appendix.
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5. Numerical examples

A concrete–wood composite beam (shown in Fig. 4) is used to demonstrate the presented method. The
dimensions and material properties of the beam are given in Fig. 3. The beam is a very slender beam with a
depth to span ratio of 1/20. This beam has been used by many other researchers to demonstrate the
effectiveness of their methods and for comparison purposes [3,19,23]. For other, less slender beams, the
advantage or precision of the presented method will be even greater.

First, the convergent property of the presented semi-analytical method is examined for an SS beam as its
exact analytical solution has been obtained in Section 3. Table 1 lists the first 10 frequencies of the SS beam
(length of the beam L ¼ 4m) without axial force, which are obtained from the exact analytical method and the
semi-analytical method. It shows that the first frequency by the SS-DQM converges to an exact solution when
N ¼ 13, while the first 10 frequencies converge when N ¼ 27.

Tables 2–5 list the first 10 frequencies of the flexural mode for four general end conditions, i.e., SS, SC, CC,
and CF. The results based on TBT and CBT [19] are also tabulated for comparison. It can be readily found
that the relative errors of the results from CBT increase rapidly with the order of the vibration mode. For the
SS and SC beams, the first five frequencies obtained by CBT are precise enough because their relative errors
are less than 5%, as are the first five frequencies of the CC beam and the first six frequencies of the CF beam.
However, TBT can predict the frequencies more precisely than can CBT. For example, the first nine
frequencies of the SS beam using TBT have a small (o5%) relative error, as have the first eight frequencies of
the SC and CF beams. It is also found that the end conditions of the composite beams can significantly affect
the precision of the frequencies that are based on CBT. The relative error of the 10th frequency of the SC
beam is 37.15% whereas that of the SS beam is only 13.22%.
5cm

30cm

15
cm

5c
m

1: concrete

2: wood

Material properties:

E1 = 12GPa

E2 = 8GPa

G1 = 5GPa

G2 = 3GPa

ρ

ρ

ks= 50MPa

1= 2300kg/m3

2= 700kg/m3

Fig. 4. Dimensions and material properties of a composite beam.

Table 1

The first 10 frequencies of the SS beam using the exact method and SS-DQM (Hz)

Order Exact SS-DQM

N ¼ 13 N ¼ 15 N ¼ 17 N ¼ 19 N ¼ 21 N ¼ 23 N ¼ 25 N ¼ 27

1 10.2768 10.2768 10.2768 10.2768 10.2768 10.2768 10.2768 10.2768 10.2768

2 33.1771 33.1771 33.1771 33.1771 33.1771 33.1771 33.1771 33.1771 33.1771

3 65.3343 65.3343 65.3343 65.3343 65.3343 65.3343 65.3343 65.3343 65.3343

4 107.3095 107.3078 107.3095 107.3095 107.3095 107.3095 107.3095 107.3095 107.3095

5 159.2021 159.1080 159.2039 159.2021 159.2021 159.2021 159.2021 159.2021 159.2021

6 220.6233 222.3699 220.6606 220.6250 220.6233 220.6233 220.6233 220.6233 220.6233

7 290.9092 279.0055 289.4288 290.8754 290.9056 290.9092 290.9092 290.9092 290.9092

8 369.2557 444.9911 380.3854 370.0474 369.3018 369.2557 369.2557 369.2557 369.2557

9 454.7913 464.9695 429.3065 446.2283 454.1611 454.7540 454.7913 454.7913 454.7913

10 546.6124 – 589.8497 586.2463 551.9660 547.0863 546.6248 546.6142 546.6124
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Table 2

The first 10 flexural frequencies of the SS beam without axial force (Hz)

Order Presented (exact) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 10.2768 10.3023 0.25 10.3215 0.43

2 33.1771 33.3569 0.54 33.5264 1.05

3 65.3343 65.8811 0.84 66.4831 1.76

4 107.3095 108.6140 1.22 110.1706 2.67

5 159.2021 161.9071 1.70 165.2736 3.81

6 220.6233 225.6710 2.29 232.1107 5.21

7 290.9092 299.5853 2.98 310.8313 6.85

8 369.2557 383.2073 3.78 401.5099 8.73

9 454.7913 476.0263 4.67 504.1863 10.86

10 546.6124 577.4941 5.65 618.8832 13.22

aThe relative errors are calculated with respect to those of the presented method (column 2).

Table 3

The first 10 flexural frequencies of the SC beam without axial force (Hz)

Order Presented (N ¼ 21) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 14.1376 14.1997 0.44 14.2548 0.83

2 38.9602 39.2428 0.73 39.5421 1.49

3 73.4855 74.2380 1.02 75.1940 2.32

4 117.8677 119.2515 1.17 121.8482 3.38

5 171.9755 180.1912 4.78 180.0027 4.67

6 235.3138 243.7934 3.60 249.9127 6.20

7 307.2026 320.0819 4.19 331.7072 7.98

8 386.9124 406.1931 4.98 425.4547 9.96

9 447.2454 501.4575 12.12 531.1936 18.77

10 473.1775 – – 648.9469 37.15

aThe relative errors are calculated with respect to those of the presented method (column 2).

Table 4

The first 10 flexural frequencies of the CC beam without axial force (Hz)

Order Presented (N ¼ 21) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 18.5859 18.6965 0.59 18.8059 1.18

2 45.2227 45.6429 0.93 46.1245 1.99

3 82.2490 83.2140 1.17 84.6717 2.95

4 128.9548 129.9440 0.77 134.3068 4.15

5 185.1945 195.5333 5.58 195.5276 5.58

6 250.3416 262.3964 4.82 268.5035 7.25

7 323.9593 341.2276 5.33 353.3696 9.08

8 404.6205 429.8477 6.23 450.1800 11.26

9 489.2047 – – 558.9783 14.26

10 584.7517 – – 679.7840 16.25

aThe relative errors are calculated with respect to those of the presented method (column 2).

R. Xu, Y.-F. Wu / Journal of Sound and Vibration 313 (2008) 875–890 885
The presented method is also applicable for the buckling analysis of partial interaction composite beams,
simply by letting the density of the material equal to zero. Tables 6–8 provide the first five buckling loads for
the SS, SC, and CC beams. The numerical results show that those of TBT are precise enough for a slender
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Table 5

The first 10 flexural frequencies of the CF beam without axial force (Hz)

Order Presented (N ¼ 21) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 3.9913 3.9935 0.06 3.9976 0.16

2 20.0468 20.0936 0.23 20.1865 0.70

3 48.4782 48.7483 0.56 49.1650 1.42

4 85.9909 86.3573 0.43 87.6023 1.87

5 132.2778 133.6544 1.04 137.1518 3.68

6 189.6269 195.7206 3.21 198.1001 4.47

7 252.9368 263.5636 4.20 270.8708 7.09

8 328.5248 342.2862 4.19 355.5156 8.22

9 405.6944 430.7051 6.16 452.1544 11.45

10 447.7495 – – 560.7886 25.25

aThe relative errors are calculated with respect to those of the presented method (column 2).

Table 6

The first five buckling loads of the SS beam (kN)

Order Presented (exact) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 268.6351 270.0838 0.54 271.0222 0.89

2 699.6742 708.3848 1.24 714.8772 2.17

3 1205.0415 1229.6902 2.05 1249.3871 3.68

4 1826.8929 1883.2759 3.09 1929.8718 5.64

5 2570.9989 2683.9653 4.39 2779.6112 8.11

aThe relative errors are calculated with respect to those of the presented method (column 2).

Table 7

The first five buckling loads of the SC beam (kN)

Order Presented (N ¼ 21) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 437.7220 441.7282 0.92 444.2441 1.49

2 911.2396 926.1098 1.63 937.2378 2.85

3 1477.3659 1514.8872 2.54 1544.8915 4.57

4 2163.7066 2244.0444 3.71 2310.5175 6.79

5 2966.8595 3119.7055 5.15 3249.6805 9.53

aThe relative errors are calculated with respect to those of the presented method (column 2).

Table 8

The first five buckling loads of the CC beam (kN)

Order Presented (N ¼ 21) Timoshenko’s beam theory Classical beam theory

Ref. [19] Relative errora (%) Ref. [19] Relative error (%)

1 699.8523 708.3848 1.22 714.8772 2.15

2 1109.0655 1132.2174 2.09 1148.8943 3.59

3 1827.4148 1883.2759 3.06 1929.8718 5.61

4 2494.8894 2605.5477 4.44 2695.5925 8.04

5 3426.6865 3630.0124 5.93 3807.1939 11.10

aThe relative errors are calculated with respect to those of the presented method (column 2).
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Fig. 7. The fundamental frequency of the CC beam with axial force.
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composite beam (h/L ¼ 1/20). However, CBT can predict only the first two or three buckling loads with a
small relative error (o5%).

Moreover, the presented method can be used to study the free vibration of composite beams with axial
force. Fig. 5 plots the fundamental frequency of the SS beam, which decreases with the axial force and which
vanishes if the axial force reaches critical loading. Figs. 6 and 7 show the same phenomenon of the variation of
the fundamental frequency due to axial force in the SC and CC beams.

6. Conclusions

A two-dimensional theory is presented to investigate the free vibration and buckling behavior of
partial composite beams. The exact analytical solution for simply supported beams is obtained, as well as
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semi-analytical solutions for general end conditions. Unlike beam theories, the presented method does not
impose extra restriction or assumption on the deflection and longitudinal displacement along the thickness of
the beam. As a result, the presented model is more precise and realistic than models based on beam theory,
whether CBT or shear deformable beam theories (e.g. TBT and other high order shear deformation beam
theories). Consequently, the results of the presented method can be the benchmark for other approximate
analytical and numerical methods based on one-dimensional beam theories.
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Appendix

For a CF beam, the modified state-space formula considering the boundary conditions is

d

dz
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si
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>>>>;
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" # Ui
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Vi
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>>>>;
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, (A.1)

where
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2C
ð2Þ
1:N�1;2:N þ Eis

2C
ð1Þ
1:N�1;NC

ð1Þ
N ;2:N �misC

ð1Þ
1:N�1;2:N�1

2
4

3
5. ðA:3Þ

The corresponding compatible conditions at the partial interaction interface are
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For a CC beam, the modified state-space formula considering the end conditions is
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where
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The corresponding compatible conditions at the partial interaction interface are
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For an SC beam, the modified state-space formula considering the end boundary conditions is
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The corresponding compatible conditions at the partial interaction interface are
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